Math 1433

18 December 2023

Warm-up:

$$
\text { Expand }(5-x)(2+4 x)
$$

$\operatorname{moc}<4$

For a square matrix A, if we have

$$
A \vec{v}=\lambda \vec{v}
$$

for some number λ and some vector $\vec{v} \neq \overrightarrow{0}$ then

- the vector \vec{v} is called an eigenvector of A, and
- the number λ is called an eigenvalue of A.

The letter λ is a lowercase Greek "lambda".

Note that if \vec{v} is an eigenvector, any scalar multiple of \vec{v} will also be an eigenvector.

Finding eigenvalues

The eigenvalues of A are the values of λ for which $\operatorname{det}(A-\lambda I)=0$.

Proof: if $A \vec{v}=\lambda \vec{v}$ and $\vec{v} \neq \overrightarrow{0}$ then

$$
\begin{aligned}
A \vec{v} & =I(\lambda \vec{v}) \\
A \vec{v}-\lambda I \vec{v} & =\overrightarrow{0} \\
(A-\lambda I) \vec{v} & =\overrightarrow{0} \quad \text { wih } \vec{v} \neq \overrightarrow{0} \\
\operatorname{det}(A-\lambda I) & =0
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } \lambda_{1}, \ldots, \lambda_{n} \text { are the eigenvalues of } A \text { (counted } \\
& \text { with algebraic multiplicity*), then } \\
& \operatorname{det}(A)=\lambda_{1} \times \lambda_{2} \times \cdots \times \lambda_{n} .
\end{aligned}
$$

For an $n \times n$ matrix A, either...

ALL of these are true:

- A is invertible
- $\operatorname{det}(A) \neq 0$
- 0 is not an eigenvalue
- $\operatorname{rank}(A)=n$

ALL of these are true:

- A is non-invertible
- $\operatorname{det}(A)=0$
- 0 is an eigenvalue
- $\operatorname{rank}(A)<n$

Task: If matrix M satisfies

$$
M\left[\begin{array}{l}
2 \\
7
\end{array}\right]=\left[\begin{array}{l}
10 \\
35
\end{array}\right] \text { and } M\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
-2 \\
2
\end{array}\right]
$$

- give two eigenvalues of M.
- give five eigenvectors of M.
- calculate $\operatorname{det}(M)$.

Task: Find the eigenvalues of $A=\left[\begin{array}{cc}3 & 10 \\ 1 & 5\end{array}\right]$.
$\lambda=(8 \pm \sqrt{44}) / 2=4 \pm \sqrt{11}$

Task: Find the eigenvalues of $A=\left[\begin{array}{cc}2 & -10 \\ 1 & 8\end{array}\right]$.
$\lambda=(10 \pm \sqrt{-4}) / 2$
©

History

History
 You have

to use $\sqrt{-1}$. It doesn't make sense, but somehow it works!

Multiplication

What does 5×3 mean?
๑

- More advanced: no pictures, just $5+5+5$.

What does $5 \times \frac{1}{3}$ mean?

$$
5.1 \times 9.26 ? \quad 7.4 \times(-12.38) ?
$$

You have changed how you think about multiplication many times already!
" $\sqrt{7}$ " is a symbol we use to describe the number for which \qquad $x_{_}=7$.

Multiplication

From now on, we will say that

$$
7 \text { ? }
$$

There are many good reasons for this, but for now just consider it a new part of the definition of how multiplication works.

People often write " $i=\sqrt{-1}$ ".

Algebra with complex \#s

Using $i^{2}=-1$ and standard algebra rules, we can can now do lots of computations with "complex numbers".

$$
5(3+7)=(5 \cdot 3)+(5 \cdot 7)
$$

$$
\begin{aligned}
x(3+2 x) & =x \cdot 3+x \cdot 2 x \\
& =3 x+2 x^{2}
\end{aligned}
$$

$$
\begin{aligned}
i(3+2 i) & =i \cdot 3+i \cdot 2 i \\
& =3 i+2 i^{2} \\
& =-2+3 i
\end{aligned}
$$

Algebra with complex \#s

 Using $i^{2}=-1$ and standard algebra rules, we can can now do lots of computations with "complex numbers".The word "complex" here does not mean difficult or complicated (skomplikowana).
It means made-of-multiple-parts (zespolona).

$$
14+18 i
$$

Types of numbers

- Natural numbers: $0,1,2,3,4, \ldots$ (in some books, only $1,2,3,4, \ldots$)
- Integers: ..., $-3,-2,-1,0,1,2,3,4, \ldots$
- Rational numbers are all the numbers that can be written as one integer divided by another. Examples: $\frac{1}{2}, \frac{-2}{3}, 1.5, \frac{8}{1}=8,0, \frac{-5}{4}$
- Real numbers are all the values on a number line. Examples:

- Complex numbers can be written as a real number plus $\sqrt{-1}$ times a real number. Examples: $3+2 i, 9.7, \frac{1}{2}-i, \sqrt{-5}$

Complex numbers

Algebra idea: allow square roots of negative numbers
Geometry idea: 2D number plane

Complex \#s in algebra: allow square roots of negative numbers.
Complex \#s in geometry: instead of "number line", use 2D number plane!

What goes it mean geometrically to add complex numbers?

Addition of complex numbers works basically the same as addition of 2D vectors!

What goes it mean geometrically to multiply complex numbers?

This is more difficult than addition. We will discuss it in the next lecture.

- Special case we can easily say now: if r is a real number then $r z$ works just like "scalar multiplication" $r \vec{v}$ with a vector.

Rectangular form

We call the horizontal (left/right) part of a complex number its real part, and we call the vertical (up/down) part its imaginary part.

Example:

- The real part of $7+2 i$ is just 7 .
- The imaginary part of $7+2 i$ is just 2 .
- Note: it is not $2 i$.
- The "imaginary part" is actually a real number.

Rectangular form

We call the horizontal (left/right) part of a complex number its real part, and we call the vertical (up/down) part its imaginary part.

Writing a complex number as

where both blanks are real numbers, is called rectangular form. If one of the blanks is 0 , we can skip that part and still call it rectangular form.

Examples:

- $(1+i)^{3}$ in rectangular form is $-2+2 i$.
- i^{3} in rectangular form is $-i$.

Polar form

Instead of 4 right and 3 up, we can describe this point as being 5 units away at an angle of 36.87°.

Magnitude and argument

The magnitude ${ }^{1}$ of a complex number is its distance from 0 .
We write z for the magnitude of a complex number z.

Examples:

- The magnitude of $4+3 i$ is 5 .
- In symbols, this is written " $4+3 i=5$ ".
- $2-7 i=\sqrt{53}$
- $-8=8$
- $a+b i=\sqrt{a^{2}+b^{2}}$ if a and b are real

Magnitude and argument

The argument of a complex number is the angle between the positive real axis and the line from 0 to that complex number.

We write $\arg (z)$ for the argument (the angle) of a complex number z.

Examples:

- The argument of $1+i$ is 45°.
- In symbols, " $\arg (1+i)=45^{\circ}$ ".
- $\arg (\sqrt{3}+i)=\frac{\pi}{6}$.
- The argument of $4+3 i$ is $\arctan \left(\frac{3}{4}\right)$, also written $\operatorname{atan}\left(\frac{3}{4}\right)$ or $\tan ^{-1}\left(\frac{3}{4}\right)$.

A calculator can tell us this is approximately 0.6435 , or 36.89°.

Where is the point

$$
z=8 \cos (\pi / 6)+8 \sin (\pi / 6) i
$$

on the complex plane?

$$
z=8(\sqrt{3} / 2)+8(1 / 2) i
$$

Where is the point

$$
z=8 \cos (\pi / 6)+8 \sin (\pi / 6) i
$$

on the complex plane?

$$
z=8(\sqrt{3 / 2})+8(1 / 2) i
$$

For a number

$$
z=a+b i,
$$

it can be difficult to find the magnitude and argument.

- This way of writing complex numbers is called rectangular form.

For a number

with $r>0$, the magnitude is exactly r and the argument is exactly θ.

- This way of writing complex numbers is called polar form.

Task: calculate z^{2} for

$$
z=8 \cos \left(30^{\circ}\right)+8 \sin \left(30^{\circ}\right) i,
$$

giving the answer in both rectangular and polar forms.

$$
\begin{aligned}
z^{2} & =(4 \sqrt{3}+4 i)(4 \sqrt{3}+4 i) \\
& =4 \cdot 4 \cdot 3+16 \sqrt{3} i+16 \sqrt{3} i+16 i^{2} \\
& =48+32 \sqrt{3} i-16 \\
& =32+32 \sqrt{3} i-\text { rectangular form }
\end{aligned}
$$

Because $\left|z^{2}\right|=\sqrt{32^{2}+(32 \sqrt{3})^{2}}=64$ and $\arg \left(z^{2}\right)=60^{\circ}$ or $\pi / 3$, we have that $z^{2}=64 \cos \left(60^{\circ}\right)+64 \sin \left(60^{\circ}\right) i \leftarrow$ polar form

